
Abstract—This paper presents and demonstrates a method to 

quickly identify when regular periodic activities, such as a daily 

night setback on a thermostat, are inappropriately configured or 

accidentally reset. Anomalies in periodic building operations are 

identified by analyzing smart meter electrical demand data in the 

frequency domain with a weekly travelling time window instead 

of using time domain functions such as load factor. Initial 

experiments on a real site found that spectral energy signals for 

periodic (frequency) hours of 4, 6, 8, 12 and days 1, 3.5 and 7 to 

be greatly reduced when a device is not functioning 

appropriately. In addition, the ratio of the DC offset (0 Hz) 

energy with the other higher periodic energies can normalize the 

periodic energies to a relative index that can then be used for 

comparing other seasons and other buildings for periodical 

performance.  

Keywords- Energy conservation, Energy efficiency, Energy 
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Smart grids 

I.  INTRODUCTION 

eal time interval electric utility meters or “smart meters”   
are becoming increasingly prevalent. This opens up the 
opportunity to develop advanced diagnostics and analytics 

for system optimization, including transformer management, 
outage management, and secondary cable management [1-5]. 
This paper describes a method to characterize an office 
building’s energy management system’s performance in the 
frequency domain and assess its performance.  This technique 
may be used, e.g., to determine if evening, working hours and 
weekend setbacks are in place or to compare its energy 
management program to other like buildings. 

Owners and/or operators of commercial buildings face an 
ongoing maintenance challenge of knowing how their buildings 
are performing. Well managed buildings undergo regular re-
commissioning efforts in order to ensure properly functioning 
systems [6], but proactively identifying when a potential issue 
or failure occurs before an unnecessary amount of energy is 
consumed can be difficult. The term “re-commissioning” is 
used to identify activities that attempt to reduce energy use 
through the identification and implementation of low-cost 
operational and maintenance changes in a functioning building 
[7, 8]. Building energy analysis techniques to help evaluate and 
optimize building energy use, such as modified bin method or 
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other system simulation techniques [9], requires significant 
modeling.  Using existing smart meter data may alleviate this 
burden. Additionally, operators of larger portfolios of buildings 
also have the challenge of determining where to direct limited 
resources in a way that offers the greatest benefit for managing 
energy. A typical metric used for building performance is 
occupant comfort. Unfortunately, comfort may not necessarily 
be jeopardized when a building controller is not functioning 
properly or if the controller is not optimized to minimize 
energy usage.  

Smart meter energy analytics [10] offer the advantage of 
diagnosing and providing first stage alerts of energy demand 
trends and anomalies en masse over large portfolios that are 
operating outside of typical parameters. Led by this concept, 
building energy consultants are increasingly using time-domain 
energy demand data to assess how building systems are 
functioning [7-9, 11]; however, complex periodical functions 
of building operations can be visualized and understood much 
more clearly in the frequency domain [12], where this paper 
focuses. Frequency domain analysis also carries the advantage 
of converting large data sets down to a few distinct numbers 
while being able to reject non-useful spectral information or 
noise.  

Common time domain diagnostics such as load factor and 
peak valley calculations can be used to find a relative 
periodicity of an energy signature [11]; however, the specific 
details of what the energy content is within the periodicity are 
not revealed hence limiting the ability to diagnose issues 
further with these tools. Similarly to [12], the frequency 
domain analysis concept is extended in this paper for use in 
quickly identifying, optimizing and diagnosing building 
automation controller issues.  

The two cases presented in this paper are from actual 
operating commercial buildings (as opposed to simulations or 
lab experiments). The test cases presented are located on the 
west coast of British Columbia, Canada. One case is presented 
as a reference case and the other is where the actual 
experiments were run. The reference case is a university office 
building powered by electricity and steam (steam is used for 
heat) with a building automation control computer controlling 
lighting and heat. The main test site and the primary focus of 
this paper, is a health facility powered 100 percent by 
electricity. In this building, the HVAC system is controlled by 
four digital thermostats located in each section of the facility, 
all with battery backups. The first author of this paper 
personally audited the site, made the corrections and monitored 
the energy demand before and after the modifications were 
made on this facility [8].  
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II. BACKGROUND 

Mining interval energy demand data from smart meters for 
meaningful information can be a daunting task. The sheer 
quantity of information can exceed the practical limitations of 
using simple pivot tables, graphs and search functions in 
spreadsheets. For example, a single energy measurement point 
sampled in one minute intervals will result in over 525,600 
samples per year. A fifteen minute measurement interval 
results in over 35,040 samples per year per measurement point. 
In addition to the quantity of information, the data itself is not 
always in a pristine form. For example, there can be small data 
gaps that may require interpolation estimates. (Note: total 
energy information is never lost but demand interval uploads 
can be missed). Reducing days, weeks, months and years of 
demand data down to a few simple performance metrics is the 
ultimate goal for developing meaningful knowledge of the 
system. Energy demand analysis in the frequency domain can 
accomplish this if the right periodical demand energies are 
selected.  For example, if a building automation system 
regularly turns the building lights on and HVAC temperature 
up for ten hours per day, a ten hour energy demand signature 
will appear when viewed in the frequency domain.  

Typical periodic energy demand parameters of a building 
are difficult to generalize but there are some trends that can be 
detected. A typical commercial building has a periodic energy 
demand pattern matching the occupants’ usage and the 
programming/setting of its building automation system (BAS). 
Most commercial facilities (excluding data centers) follow a 
twenty-four hour energy cycle for each day and a seven day 
energy cycle for a typical commercial work week (such as 
offices and stores). However, there are often other periodical 
demand energy signatures created by the occupants that are less 
obvious, such as regular work periods (seven to eight hours), 
lunch breaks (four hours from the start of the day), and 
seasonal vacations. The building automation system should be 
programmed to track the behavior of the occupants and seasons 
(with a phase delay) so that the building’s environment is 
brought to an acceptable comfort level when the occupants are 
present while also minimizing energy usage when they are not 
present. Since occupants operate on a daily cycle, it is logical 
to assume that a non-functional building automation computer 
that keeps the temperature constant day and night or has 
improperly programmed night and weekend temperature 
setback features will show a weakening of the spectral 
electrical demand in some normally prominent bands. If this 
were to be observed in the frequency domain, certain normally 
strong periodical demand energies will show a drop or drift 
towards the random noise platform when a failure occurs. 

A one month time series plot of a commercial building’s 
electrical energy demand will very clearly show weekly and 
daily (24 hour) periodic behavior. Take that of the reference 
case, Fig. 1, that shows one month of the energy demand of a 
building that has been recently audited, re-commissioned and is 
in ideal working order. The building is located on a university 
in Vancouver, BC, Canada and is used primarily for office 
work.  Referencing Fig. 1, there are four groups consisting of 
five peaks indicating week day working hours and two very 
small peaks indicating weekend operating activity. However, in 
this time-domain approach it is difficult to see other periodic 

trends in the data compared to analysis in the frequency domain 
as seen in Fig. 2.  

 

Fig. 1: One Month of Office Building's Electrical Demand (kW) 

The frequency domain conversion (Fig. 2) was attained 
using Fourier Transformation with square windowing for one 
month with the result further processed by taking the square 
root of the squared sum of real and imaginary values. The 
amplitude (y-axis) is scaled to the actual power. The frequency 
axis (x-axis) is scaled by time (in hours/cycle) of the periodic 
cycles instead of the usual cycles/second (Hz) that is typically 
characteristic of the frequency representation. This scaling is to 
allow the clear viewing of daily periodic schedules and 
periodic behavior of the building automation and occupants in 
terms of hours that are easy to understand. Here, high energy 
periodical points can be seen on the four, six, eight, twelve and 
twenty-four hour cycle periods (Fig. 2) indicating that 
throughout the month, there are not only the obvious twenty-
four hour cycles but other more subtle ones present created by 
both computer control and occupant activities such as taking 
lunch which shows up in hour four. Clearly the twenty-four 
hour cycles are obvious from Fig. 1 but the others seen in 
Fig. 2 frequency domain are not. The process by which to use 
Fourier transform on time-series energy data is described next.   

III. THEORETICAL CONCEPT 

To convert a time based sampled signal to the frequency 
domain, the discrete Fourier transform is commonly used [13, 
14]. The transform is accomplished by calculating the sum of 
all the products of a function at point “n” with the cosine and 
sine wave at point “n” in reference to a specific frequency. All 
frequencies are set between 0 to 2π where 2π is equal to the 
sampling frequency. The results for each frequency are real and 
imaginary values (1). The square root of the squared sum of the 
real and imaginary values yields the magnitude of the specific 
frequencies. 

However, whereas (1) is for continuous infinite signals, this 
work requires sampling of discrete time measurements.  A 
sampled signal windowed at a finite interval contains 
undesirable high frequency artifacts at its sharp discontinuous 
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ends. This phenomenon is called the Gibbs Effect. To reduce 
the Gibbs Effect, a windowing function can be multiplied onto 
the signal such as Hamming and Hanning type windows [14]. 

 

Fig. 2: Office Building's Electrical Demand (kW) vs. Frequency 

   (   )   ∑  [ ]     
     

These windows slowly taper a signal’s amplitude at each 
end to zero, thereby diminishing the end of each window’s 
discontinuity causing a significant reduction in the Gibbs 
Effect. The windowing addition to a discretized finite length 
sample can be seen in (2). Since windowing creates losses in 
the signal and prevents the ability of summing the power at 
each periodical demand energy, months and weeks were 
aligned as accurately as possible within a square window so as 
to minimize discontinuities. 

  (   )  ∑  [ ]    
      [ ] 

The fast Fourier transform (FFT) is often referenced when 
completing a discrete Fourier transform. The FFT is an 
efficient algorithm used to compute the discrete Fourier 
transform, but there is no loss of data in the conversion. The 
FFT was used for data processing of (2) in this work.   

The resolution of the periodical demand energy components 
is limited by the Nyquist frequency and the sample window. 
The Nyquist frequency (frequency is the inverse of the sample 
time, fnyquist=1/(2Tsample)) is half the sampling frequency of the 
signal. Undesirable aliasing or frequency folding can be 
avoided by only analyzing frequencies lower than or equal to 
the Nyquist frequency. In the case of fifteen minute sample 
time demand meters, the Nyquist frequency is 1/(thirty 
minutes).  

The sample window size (i.e. 1 day of samples, 1 month, 1 
year, etc.) determines the frequency change per step. The 
frequency step of each point of the Fourier transform is then 
equal to the ratio of the sample window time and the time of 
each sample step (3). To convert fifteen minute intervals to 
frequency steps in hours, (3) must be converted to hours.   

  ( )      
              

 ( )           
 

Take, for example, using the fifteen minute interval meters 
with a time window of thirty days. The formula for conversion 
to frequency per point would make 
tsample window = 30x24x60/15=2880 hours, and 
t(x)sample  step = (60*xsample number)/15=4x where x is each time 
step. 

  ( )      
    

  
 

A. Normalization for Comparison 

When using this theory to compare different seasons or  
two different buildings of interest, the data must be normalized 
and the periodical demand energies to be used determined. 
Using the reference case presented as a guide, the periodical 
demand energies for 2, 4, 6, 8, 12 and 24 hours are all selected 
as points of interest for evaluation. To normalize the data for 
relative comparison to other seasons and similar facilities, the 
intensity of the periodical demand energies can be normalized 
in two ways: 1) By dividing the zero frequency periodical 
demand energy (or DC offset) by each 24, 12, 8, 6, 4, and 2 
hour periodical demand energy or 2) By comparing workweek 
setback by weekend setback.   The one day periodical demand 
energy can be divided by the seven day periodical demand 
period. If this number is close to one there may be an issue with 
weekend setbacks and should be further investigated. With a 
health facility, this may not be the case as the facility operates 
seven days per week.  

The process for the analytical experiment is illustrated in 
Fig. 3. The normalized periodical demand energy components, 
fn, are calculated as in (5), where n represents hours of the 
1/( frequency) time. 

 [   ]    [
[ ( )]

∑ (    )
] 

The normalized periodical demand energy vectors in (5) are 
the points used for assessing the state of the building BAS. 
When the periodical demand energies experience a significant 
and permanent change, it may signal an issue that may be 
worth looking into by the building owner.  

The main test site, a commercial health facility located on 
the west coast of British Columbia, Canada that depends on 
electricity for all of its energy needs, was used to demonstrate 
the frequency domain assisted evaluation of BAS.  It was 
chosen because all modifications made to the building were 
witnessed and all changes could be accounted for, making for a 
compelling opportunity to demonstrate the concept.  Since it is 
a health facility, it is typically used on both weekdays and 
weekends with hours of operation of nine to five (seven days a 
week).  The BAS computers are programmed considering this. 
The facility has no air conditioning load. Heating is controlled 
by four individual thermostats linked to the HVAC system and 
digital controls for some other line voltage baseboard heaters 
located at the doors. The facility was installed with a smart 
meter as part of a community effort to improve efficiency and 
explore demand side management options. The health centre’s 

 
 

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Electrical Demand (kW) vs. Frequency (1 month window) Commercial Facility

Frequency (hours/cycle)

E
le

c
tr

ic
a
l 

D
e
m

a
n

d
 (

k
W

)

8hr 

12hr 

6hr 

4hr 



energy profile was monitored and recorded for one year before 
any changes were made. This facility was only a few years old 
and was originally assumed to be operating as designed, that is, 
efficiently, making it a low priority in a demand side 
management program within the community. However, this 
was discovered not to be the case, making its one year of 
collected energy data good for analysis. 

 

 

Fig. 3: Analysis Process for Fourier Travelling WindowTest Case Description 

At the end of April of 2011, an energy audit was conducted 
on the main test site (health facility). The occupants were 
interviewed so as to get an initial check on the comfort level. 
Some occupants indicated the building was sometimes overly 
warm or cool, which they alleviated by opening or closing 
windows during the day. Further inspection into the warm and 
cool comments revealed that the computerized thermostats for 
the HVAC had lost their programs and were functioning in a 
nearly constant “on” state with little to no evening setbacks. 
The computerized thermostats were replaced the same month 
with newer upgrades and reprogrammed so as to meet the 
occupant’s comfort including a lunch time setback as everyone 
tended to leave the building for lunch. Baseboard heaters had 
similar digital thermostats, installed by an electrician on the 
same week, that were designed specifically for line voltage 
heaters. The data collected which formed the ‘baseline’ data for 
the analysis in this paper goes back five months; post-
installation, six months of data had been collected (up to the 
writing of this paper).  

IV. EXPERIMENTAL RESULTS 

Electrical energy demand data was collected in one minute 
and fifteen minute average demand intervals, then analyzed 
using the proposed algorithm for a period of five months before 
the modification and several months afterwards, using week 

and month long time windows. High intensity values from (5) , 
i.e. when the periodic energy (denominator) is very small and 
the DC is very high (numerator), indicate a problem. The 
change in the time domain series is very clear when viewing 
the demand data one month before the modification was made 
(Fig. 4, top graph) and the one month after the modification 
was made (Fig. 4, bottom graph). However, the most 
significant changes come from the normalized frequency 
series, which show substantial differences in periodical demand 
energy intensities, before and after the modifications were 
made. Before the modifications, Fig. 5, top, there are no 
periodical demand energies close to 5 kW except for the twenty 
four hour cycle, but after the modification, Fig. 5, bottom 
graph), significant periodical demand energies do appear 
(indicating that the BAS is working).  

By tabularizing and normalizing the periodical demand 
energy results before and after the BAS corrections and 
comparing them, one can observe that the change in periodical 
demand energy content is significant (Table 1). The periodical 
demand energy ratios (before and after the modifications) range 
from 4.60 to 21.64; the hour two periodical demand energy has 
the greatest change in ratio. The effect of the modification to 
the BAS (which occurred on the fifth month) can be seen by 
plotting the periodical demand energies vs. the month of the 
experiment, Fig. 6 (logarithmic plot).  Each bar represents a 
monthly time window; the drop between bars 5 and 6 reflects 
when the change happened and its significance.  

 

 

Fig. 4: One Month of the Health Facility’s Demand Before (Top) and After 

(Bottom) Modification, in Time Domain 
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Fig. 5: One Month of the Health Facility’s Demand Before (Top) and After 

(Bottom) Modification, in Frequency Domain 

 
Table 1: Changes in Health Facility BEM System Reflected by Normalized 

Intensity  

 
Normalized Intensity (from F(0)) 

Periodical demand energy 

 

Before  

(month 5) 

After  

(month 7) 

Change  

(Before/After) 

24 23 5 4.60 

12 33 7 4.71 

8 54 10 5.40 

6 154 21 7.33 

4 289 53 5.45 

2 909 42 21.64 

 

 

Fig. 6: Periodical demand energy Ratio vs. Time (Month/bar) of Health 

Facility 

This same experiment can be repeated by using weekly 
windows for the Fourier transform instead of monthly, with 
similar results. Weekly time windowing carries the advantage 
of permitting quicker fault detection.  

It can be seen that when comparing this case with the 
reference ideal case shown in Fig. 2, the periodic energy 
signatures are all below a normalized intensity of 150 and the 
two and four hour energies are not present (Fig. 7, Logarithmic 
plot). The lack of two and four hour energies may indicate that 
there is no lunch-time setback for this building as there was for 
the case study.  The intensity value of 150 indicates the 
reference case’s periodical functions are significant and 
present, however a portfolio manager would need to baseline 
their own buildings to match the facility’s utilization. For a 
failed building automation system as seen in the main test site 
(health facility) the intensity ratio increases logarithmically as 
the periodic functions tend to zero energy.  

 
Fig. 7: Periodical demand energy Ratio vs. Time (Month/bar) for Office 

Building 

 

V. DISCUSSION OF RESULTS AND CONCLUSION 

Periodical demand energy analysis of building automation 
system (BAS) functions simplifies large amounts of demand 
data into a few readable indicators (numbers), easing the job of 
a facilities manager and increasing their likelihood of detecting 
anomalies by simply observing a trend of increasing periodical 
demand energy ratios from the original baseline. By 
normalizing the values to the zero frequency point, the energy 
use patterns of different buildings at different times of the year 
and at different demand intensities can be compared with each 
other. This allows for evaluation against standard acceptable 
periodical demand energy intensity ratios.  Low periodical 
demand energy intensity ratios in a band indicates that it has 
strong periodical demand energy and  that computer control is 
operating as intended, while high periodical demand energy 
ratios indicate a lack of any periodical demand energy in that 
particular band, which may indicate a non-functional computer 
control system. No values for periodical demand energy bands 
indicate an extremely low or no periodical demand energy in 
that particular band.  Further analysis using the power spectral 
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density functions may further resolve the work though this was 
outside of the scope of this initial evaluation. 

The initial stages of this research point towards focusing on 
periodical demand energies relating to common working hours, 
but there are likely other key periodical demand energies that 
will arise out of a comprehensive analysis of building demand 
data and patterns of periodical demand energies. The largest 
challenge with this research is gaining access to detailed 
demand data and linking the specific results with changes in the 
building’s operations. The authors were fortunate enough to 
have extensive access to the case presented in this paper. 
Though it was not shown directly in this work, 3.5 day and 7 
day energy periodical demand energies tended to show periodic 
energy periodical demand energies with the base case, though it 
was inconclusive as to what the 3.5 day period periodical 
demand energy meant (while weekly periodic energy clearly 
represented a weekly cyclic energy usage.)   In future work, the 
authors will be investigating weekly energy patterns, analyzing 
drift around a typical eight hour working day and conducting a 
more comprehensive building analysis study.  
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